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Abstract- A 128 bit comparator is designed with conventional digital cmos gates that make use of parallel 

prefix tree structure. The comparison is performed bit wise proceeding from most significant bit to least 

significant bit. The comparison of lower bits is carried only when the most significant bits are equal which 

decreases the power dissipation in the circuit. To make the circuit regular the design is made using only cmos 

logic gates. The transmission gates used in the existing design are replaced with the simple AND gates so that 

the entire circuit can be designed in gate level. This 128 bit comparator is designed in cadence environment 

using tsmc 0.18µm technology with a power dissipation of 0.28mw and with a delay of 0.09ms. 

 

I. INTRODUCTION 
Comparator is a logic circuit that is used to compare the magnitude of two given numbers. Comparators are 

key design elements in many mathematical and scientific applications. It is used in wide range of applications to 

support scientific computations, signature analysis and test circuits etc. Some of the comparators are designed 

using adder architectures. These types of architectures are slow and occupy more area even though we 

implement fast adders. Some of the comparators are designed using multiplexer architectures. These 

architectures divide the n bit input into 2 n/2 bits and the result of two n/2 comparators is given to the 

multiplexer but the power consumption of the circuit becomes very high. Some of the comparators are designed 

using all N transistor (ANT) circuits. But all the nmos transistors connected in series enter into saturation mode 

during operation which leads to overall increase in conductive resistance. 

      Some of the comparators use priority encoder architectures. These architectures divide the n bit input into 2 

n/2 bits and the result of two n/2 comparators is given to the priority encoder so that it considers the msb priority 

first. Here in our project we use parallel prefix architecture. In this architecture the n bit inputs are divided into 

n/4 modules each module compares individual 4 bits. The comparison is carried from the most significant bit to 

the least significant bit. The comparison is carried out only when the most significant bits are equal. If at all a 

decision can be taken in the initial modules then the next modules will not perform comparison operation 

thereby saving the power. The details about this architecture can be studied from the following chapter. 

 
Figure1: Block diagram of 128 bit comparator architecture with comparison module and decision module 

 

The comparator comparison module is a parallel prefix structure that performs bitwise comparison of 128 

bit operands. The input operands  A and B are denoted as A128,A127,A126………A2,A1,A0 and 

B128,B127,B126…….. B2, B1, B0. The comparator resolution module performs bit wise comparison from MSB to 
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LSB such that the comparison is triggered only when the higher order of bits are equal. The comparison 

resolution module encodes the comparison bits into two buses that is left bus and right bus such that each bus 

stores the partial comparison result as each bit is compared such that 

If   An > Bn then left n = 1 and right n = 0 

 An> Bn then left n = 0 and right n = 1 

 An = Bn then left n = 0 and right n = 0 

The decision module uses or-network to make a final comparison decision based on the bits of left bus and 

rights bus. 

If  

 lr =00   then  A = B 

 lr = 01  then  A < B 

 lr = 10  then  A > B 

 

II. COMPARATOR ARCHITECTURE 

 
Figure2: 128 Bit Comparator Architecture 

 

 

The comparator architecture consists of comparison module and the decision module. The comparison 

module performs the comparison of the give input bits. As we are designing a 128 bit comparator the 128 bits 

are grouped into 4 bits and each four bits are compared in a single module and we have 32 modules each 

comparing 4 bits. Each 4 bit comparator module takes two 4 bit input operands one enable signal from the 

previous comparator module. This enable signal helps in triggering the present module for comparison. Each 4 

bit comparator module has 4 outputs that are associated with the decision module and one enable output that 

acts as enable input for the next comparator module for comparison. The decision module gets its input from the 

comparison module. Each comparison module gives 4 outputs for 4 input bits. In this way we get a total of 128 

outputs from the comparison module each single output for 128 inputs. Each four inputs are combined to get a 

single output. This procedure is followed until we get our final 3 outputs which are A greater than B (A>B), A 

less than B (A<B), A equal to B (A=B). Each 4 bit comparator module of the comparison module is again 

divided into five hierarchical set elements that perform the comparison operation in a serial manner. We 

partition the comparator resolution module structure into five hierarchal prefixing sets. 
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Figure3:  Tree structure of comparison module 

 

III. COMPARATOR DESIGN 
The comparison module performs bitwise comparison using a tree structure. In the comparison module we 

use five Sets of elements. Each set performs an individual operation of comparison. Set -1 performs comparison 

of two individual bits of A and B. The output of set-1 acts as the input of set-2 .set-2 combines the output of four 

set-1 outputs. The output of set-2 acts as input to set-3. The output of set-3 acts as enable input to set-4 

elements. The output of set-4 element acts as enable input to set-5 element. The output of set-5 element forms 

right and left bus bits. The right and left bus bits from the comparison module are given to the decision module 

which performs or-operation and decides whether A is greater than B or A is less than B or A is equal to B.  

Set 1 compares the N-bit operands A and B bit-by-bit, using a single level of set 1type cells. The set_1type cells 

provide a termination flag Di to cells in sets 2 and 4, indicating whether the computation should terminate or to 

proceed. These cells compute XOR operation.  

 
Set 2 consists of set _2 type cells, which combine the termination flags for each of the four cells from set 1 

(each _2-type cell combines the termination flags of one 4-b partition) using NOR-logic to limit the fan-in and 

fan-out to a maximum of four. The set _2type cells either continue the comparison for bits of lesser significance 

if all four inputs are 0s, or terminate the comparison if a final decision can be made. For 0 ≤ m ≤ N/4–1, there is 

a total of N/4 _2-type cells, all functioning in parallel 

 
Set 3 consists of set_3-type cells, which are similar to set _2 type cells, but can have more logic levels, 

different inputs, and carry different triggering points.  Set_3 type cells provide no comparison functionality. The 

cell’s sole purpose is to limit the fan-in and fan-out regardless of operand bit width. To limit the set _3-type 

cell’s, the number of levels in set 3 increases if the fan-in exceeds four. Set 3 provides functionality similar to 

set 2 using the AND logic to continue or terminate the bitwise comparison activity. If the comparison is 

terminated, set 3 signals set 4 to set the left bus and right bus bits to 0 for all bits of lower significance. For 0 ≤ 

m ≤ N/4 − 1, there is a total of N/4 set _3 type cells per level. From left to right, the first four set_3 type cells in 

set 3 combine the 4-b partition comparison outcomes from the one, two, three, and four 4-b partitions of set 2. 

Since the fourth set_3 type cell has a fan-in of four, the number of levels in set 3 increases and set 3’s fifth cell 

combines the comparison outcomes of the first 16 MSBs with a fan-in of only two and a fan-out of one.  

S3,m =S2,m-1.S2,m 

Where m indicates the module number     

S2,m indicates the output from present module set-2 

S2,m-1 indicates the set-2 output from previous module 

Set 4 consists of cells, whose outputs control the select inputs of set_5 type cells  in set 5, which in turn drive 

both the left bus and the right bus. For an set 5-type cell and the 4-b partition to which the cell belongs, bitwise 
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comparison outcomes from set 1 provide information about the more significant bits. The number of inputs in 

the set 4 type cells increases from left to right in each partition, ending with a fan-in of five. Thus, set 4 

determine whether set 5 propagates the bitwise comparison codes or not. 

 
Set 5 performs the functionality of a multiplexer that is it shows whether the bit from the input A is greater 

or vice versa set_5 gives 2 bit output.  The select control input is based on the set_4 type cell output from set 4. 

We define the 2-b as the left-bit code li and the right-bit code ri where all left-bit codes and all right-bit codes 

combine to form the left bus and the right bus, respectively. The output F denotes the ―greater-than,‖ ―less-

than,‖ or ―equal to‖ final comparison decision 

S5iai = s4i(ai) 

S5ibi = s4i(bi) 

 

F =S5iai S5ibi 

 

00, for Ai = Bi 

01, for Ai < Bi 

10, for Ai > Bi . 

 

Essentially, the 2-b code F can be realized by OR-ing all left bits and all right bits separately, in the decision 

module using an OR-gate network. 

 
Figure4: Design of a single module (4-bit) comparator 

 

IV. IMPLEMENTING 128 BIT COMPARATOR IN A SORTER 
Sorting is a fundamental operation in which the given sequence of elements is arranged in a specific order. 

We see many applications of sorting in our daily life. If we consider a database of students in a college they are 

arranged in a sequence either in alphabetical order or roll number wise or date of admission etc., not only in 

colleges we can also see the applications of sorting in various scientific fields. The basic element in the sorting 

circuit is comparison element. We use a magnitude comparator as a key element in the sorting circuit. The 
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comparator compares two elements and produces three outputs greater than, less than and equal to. Based on 

these outputs the sorting circuit uses a swapping module so that the elements in the given sequence are sorted in 

a desired order. 

 
Figure5: Basic sorting I.O architecture 

 

 
Figure6: Basic sorting D.O architecture 

 

Bitonic sequence is a sequence that has one monotonic increasing sequence and one monotonic decreasing 

sequence. Because of the two monotonic sequences it is called bitonic sequence. Bitonic sorting divides the 

given n numbered sequence into two n/2 sequences out of which one is sorted in ascending order and the second 

n/2 sequence is sorted in descending order. Whether the increasing order sorting has to be performed first or 

decreasing order sorting has to be performed first depends on our sorting order. If at all we have to perform 

sorting in an increasing order then the first n/2 sequence is sorted in increasing order and the second n/2 

sequence is sorted in the decreasing order. All the elements in the first n/2 sequence will be less than or equal to 

the elements in the second n/2 sequence.  If at all we have to perform sorting in a decreasing order then the first 

n/2 sequence is sorted in decreasing order and the second n/2 sequence is sorted in the increasing order. All the 

elements in the first n/2 sequence will be greater than or equal to the elements in the second n/2 sequence. Then 

the two n/2 sequences are sorted using merge sort. The bitonic sorting network consists of two key elements. 

One is comparator element and the other is swapping element. The comparator compares two elements and 

produces three outputs greater than, less than and equal to. Based on these outputs the sorting circuit uses a 

swapping module so that the elements in the given sequence are sorted in a desired order. 

 
Figure7: General bitonic sorting module for increasing order sorting 

 

 
Figure8: General bitonic sorting module for decreasing order sorting 
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The general bitonic sorting to sort the elements in increasing order is performed as below 

 
Figure9:  Example for ascending order bitonic sorting 

 

The general comparator module used in the sorting is replaced by the 1128 bit parallel prefix tree structure 

comparator and is as shown in the figure 10 

 
Figure10:  Implementation of comparator in 16 numbered sequence bitonic sorter 

 

V. RESULTS 

 
Figure11: output of the comparator showing all the results a>b, a=b & a<b 
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Figure12: RTL for 4 stages of comparator (16 bit) 

 

 
Figure13: Layout for 128 bit comparator 

 

 
Figure14: simulation results for bitonic sorter performing 4 types of sorting orders 

 

VI. POWER ANALYSIS 
No of bits Leakage 

power(µw) 

Dynamic 

power(mw) 

16  0.05 0.03  

32  0.1  0.07 

48 0.16 0.11 

64  0.22 0.14 

80 0.27 0.17 

96 0.33 0.21 

112 0.38 0.25 

128  0.44 0.28 

Table: 1 power dissipation for various bit comparators 
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As the number of bits increases the power dissipated by the comparator architecture increases. The Power 

dissipated for various bits of comparators are shown below. 
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Figure15:  power dissipation for various bits of comparator 

 

VII. CONCLUSION 
We have designed 128 bit comparator using parallel prefix tree architecture. This architecture consists of 

parallel structure which helps in replicating the design which supports VLSI reconfigurable topology. All the 

cells used in this architecture are logic gates which makes use of cmos logic. The comparator dissipates a power 

of 0.2mw and has a delay of 0.5ms. By using this 128 bit comparator we designed a sorter that sorts 16 numbers 

in four different sorting orders using bitonic sorting method.  
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